Prospects for CP violation at the Tevatron (all angles)

Petar Maksimovic, for CDF and D0

CDF and D0 caught between

- 1) idealistic projections from long ago
- 2) realistic extrapolations from recent measurements
- report on (2) only in several cases show progress in other areas

Hadronic environment

Disadvantages:

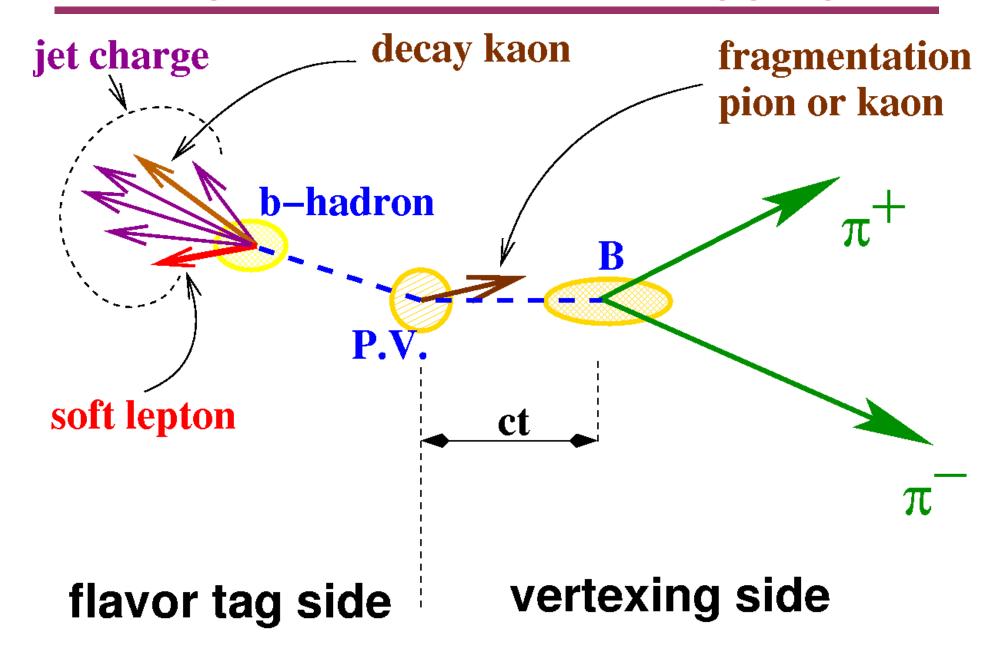
- "messy"
- opp. side b-hadron not recostructed 20-40%
 of time (coverage an issue -- points for D0)

Advantages:

- huge $b\bar{b}$ cross-section (~100 μb total)
- (still only 1 per ~1000 soft QCD collisions)
- > live and die by the trigger

(displaced track triggers: CDF from beginning,

D0 commissioning now; faster DAQ -- points for CDF)


Ingredient #1: Luminosity

Luminosity	By 2008	By 2010
in inverse fb		+ recycler
Base projection	2.11	4.41
Design projection	3.78	8.57

(more optimistic, relies on electron cooling)

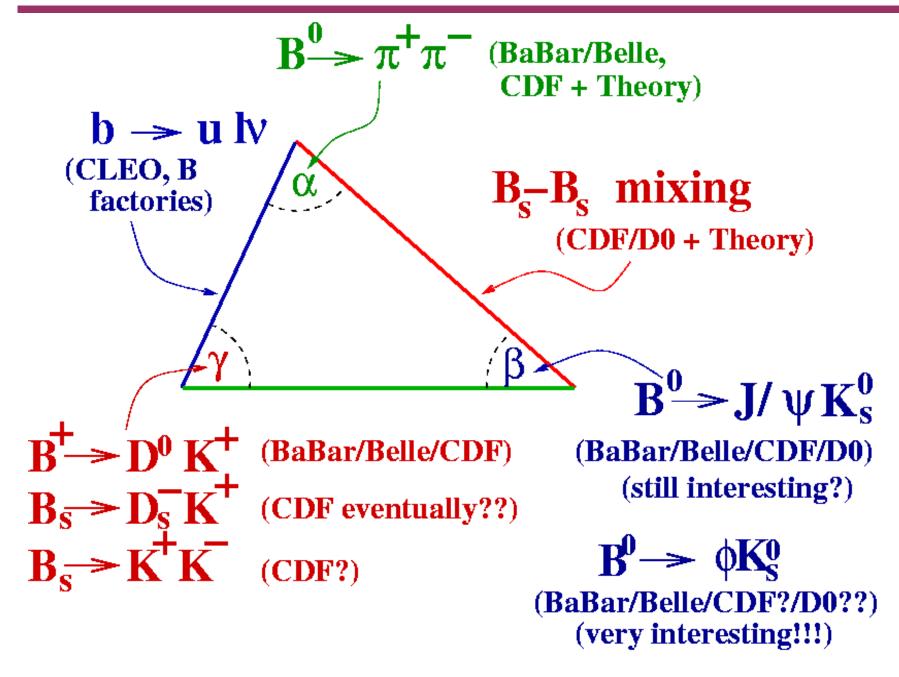
- Consider 2 inv.fb and 3.5 inv.fb
- Not clear if current B triggers are OK > 2007

Ingredient #2: flavor tagging

Ingredient #2: flavor tagging

$m{\epsilon}m{D^2}$ [%]	CDF	D0
Soft Muons	0.66±0.09	1.6±1.1
Soft Electrons	?	?
Jet Charge	?	3.3±1.7
Same Side	1.9±0.9	5.5±2.0
Opp.Side Kaon	? [2.4]	N/A
Same Side Kaon	? [4.2]	N/A

• For projections, CDF is using $\epsilon D^2 = 5\%$ (Down from > 10% since Kaon tagging not ready)

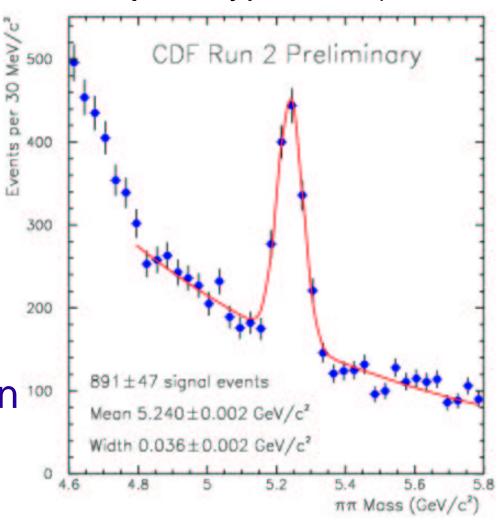

Ingredient #3: time resolution

	Proper time resol [fs]		
CDF	67 (50 with L00)		
D0	110		

Other expected improvements:

- D0: significant trigger upgrade just installed -adding track-based triggers!
- CDF: upgrades to DAQ and trigger logic in 2004 and 2005
- CDF's Layer 00 ready for physics

Overall game plan


Composition of $B o h^+ h^-$

Mixture of:

$$B_d
ightarrow K\pi$$
 $B_d
ightarrow \pi\pi$
 $B_s
ightarrow KK$
 $B_s
ightarrow K\pi$

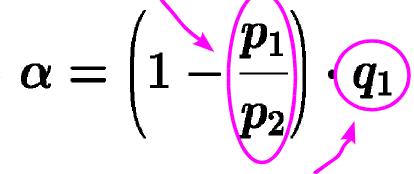
- Can't use ToF
- Effective K/π separation of dE/dx only ~ 1.16 σ

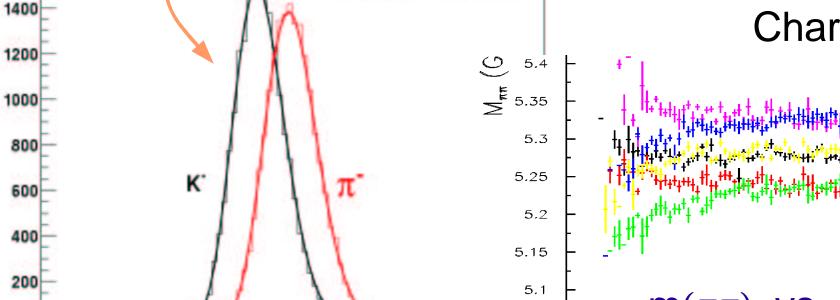
 $(\pi^+\pi^-)$ hypothesis)

 \Rightarrow

Separate on statistical basis

Multi-dim unbinned likelihood fit


For each particle, use:


1600

Pion momenta, $p_1 < p_2$

- dE/dx (calibrated on D*)
- Kinematic: $m(\pi\pi)$ and α

 $(dE/dx - dE/dx(h))/\sigma(dE/dx)$

5.05

separation = 1.25 o

 $m(\pi\pi)$ vs α

$B o h^+ h^-$ Results

- 65/pb of data
- First observation of,
- Includes error on f_s/f_d

mode	Yield (65 pb ⁻¹)	
Β ⁰ → K π	148±17(stat.)±17(syst)	
$B^{o} \rightarrow \pi\pi$	39±14(stat.)±17(syst)	
B _s →KK	90±17(stat.) ±17(syst)	
$oldsymbol{\mathcal{B}_s} \!$	3±11(stat.) ±17(syst)	

$$rac{BR(B_s
ightarrow K^\pm K^\mp)}{BR(B_d
ightarrow K^\pm \pi^\mp)} = 2.71\pm1.15$$

Already interesting

• Direct A_{CP} ~ 0, syst comparable to B factories

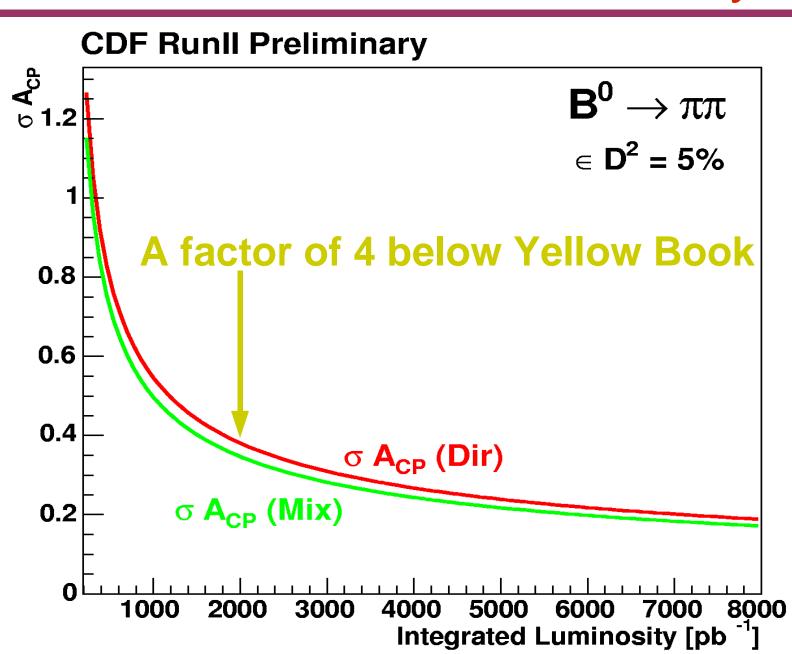
$$A_{CP}(B^0 \to K^-\pi^+) = 0.02 \pm 0.15 \text{ (stat)} \pm 0.02 \text{ (syst)}$$

Projected yields in $B \to h^+h^-$

Mode	Yield 2 fb $^{-1}$	Yield 3.5 fb^{-1}
$B_d \to K\pi$	6700	11,725
$B_d o \pi\pi$	1770	3097
$B_s \to KK$	4040	7070
$B_s \to K\pi$	1070	1870

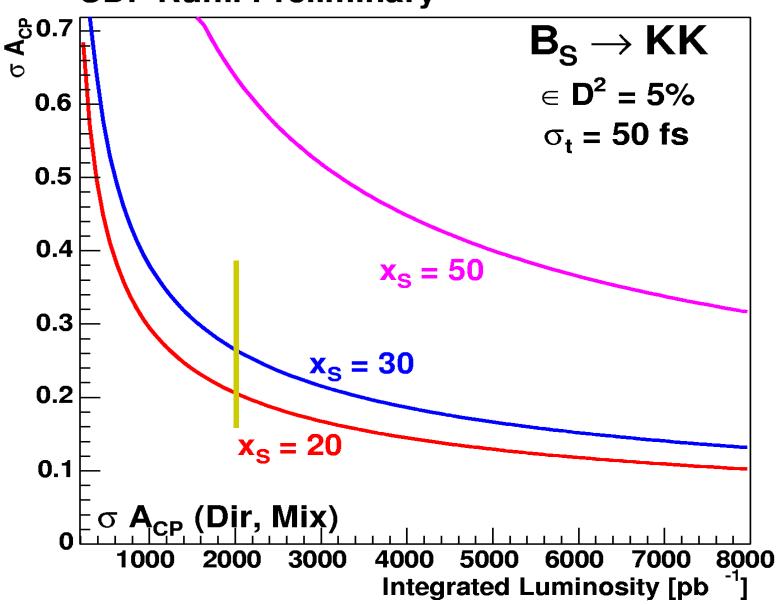
- $B_s \to K^+\pi^-$ -- from theory (no sensitivity yet)
- Simultaneous fit to kinematics + mass + dE/dx \implies errors not ~ \sqrt{N} -- N must be scaled by x0.6
- Systematics dominated by dE/dx
 calibrated by D* improve with more data

Angles α and γ : fitting for A_{CP}


- Use flavor tagging -- $\epsilon D^2 = 5\%$
- R.Fleischer, PLB 459 (1999) 306
- Separate Acp components into $B^0 o \pi^+\pi^-$ (measures $\sin 2lpha$) and $B_s o K^+K^-$ ($\sin 2\gamma$)

$$A_{CP}(B^0) = A_{CP}^{
m dir}\cos\Delta m_d t + A_{CP}^{
m mix}\sin\Delta m_d t$$

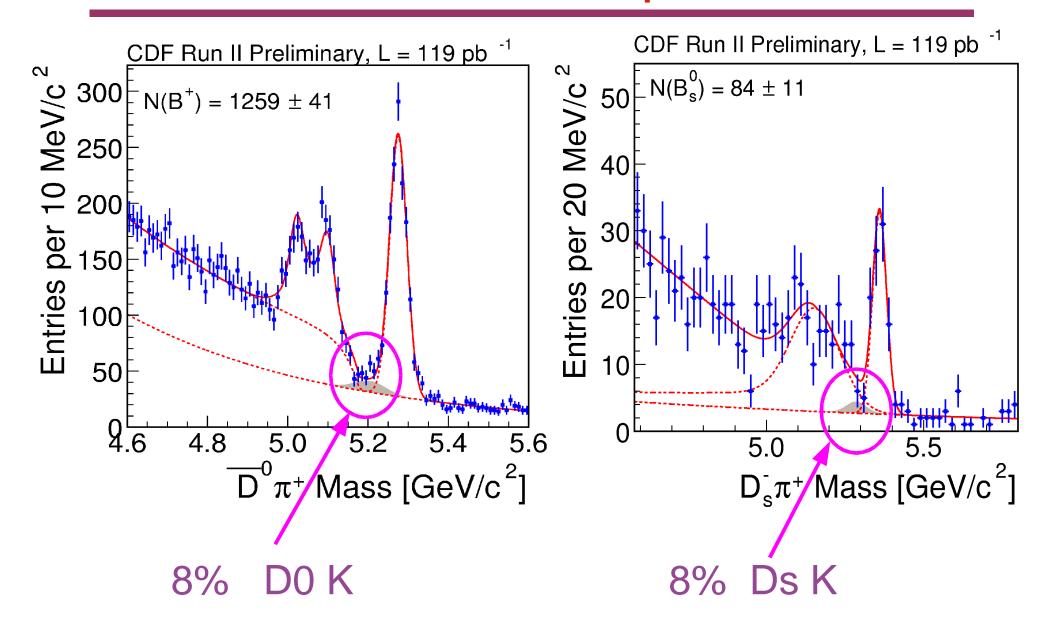
Trigger favors mixing Acp (due to Lxy cut)


$$A_{CP}(B_s) = A_{CP}^{
m dir} \cos \Delta m_s t + A_{CP}^{
m mix} \sin \Delta m_s t$$
Large but unknown

Error on $oldsymbol{A_{CP}}$ vs luminosity

Error on A_{CP} vs luminosity

CDF Runll Preliminary

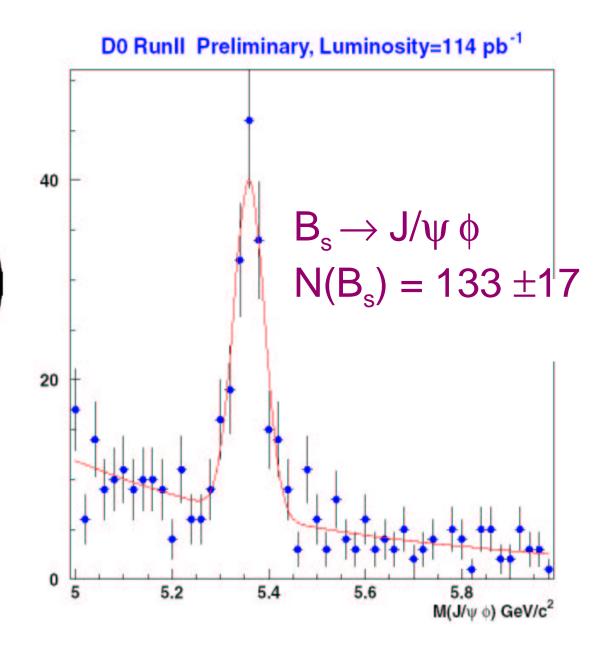

$B \rightarrow DK$ Decay modes

- Estimates of yields only
- Need to do a combined mass vs dE/dx fit for Cabibbo suppressed $B \to DK$ modes first
- $B_s o D_s K$ tied to Bs mixing in $B_s o D_s \pi$

• BaBar/Belle:
$$rac{BR(B^+ o D^0 K)}{BR(B^+ o D^0 \pi)} = (8.31 \pm 0.35 \pm 0.20)\%$$

Mode	Yield in 2 fb ⁻¹	Yield in 3.5 fb−1
$B^{\pm} \to \overline{D}^0 \pi, \overline{D}^0 \to K \pi$	48,000	84,000
$B^{\pm} \to \overline{D}^0 K, \overline{D}^0 \to K\pi$	3990	6980
$B^{\pm} \to \overline{D}^{0}K, (\overline{D}^{0} \to KK + \overline{D}^{0} \to \pi\pi)$	520	910
$B_s \to D_s \pi, D_s \to \phi \pi$	3200	5600
$B_s \to D_s K, D_s \to \phi \pi$	256	448

$B \rightarrow DK$ mass plots


CP violation in $B_s \rightarrow J/\psi \phi$

- Both D0 and CDF
- ullet Needs $oldsymbol{x_s}$ first
- Measures

$$eta_s \equiv \mathrm{arg}\left(-rac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}
ight)$$
 (directly ~ η)

CDF's yield:

 120 ± 13 events
 in 140 pb-1

Direct CP violation

- $B^+ \rightarrow \phi K^+$ etc. especially interesting
- $B^0 o \phi K^0_s$: a dedicated phi trigger will help
- Measure A_{CP} for all decay modes

• Baryons too! e.g. $\Lambda_b \to pK$, and $\Lambda_b \to p\pi$ Food for thought: what if $A_{CP} \neq 0$?

Direct CP violation in Charm

• $D^{*+} o D^0_{CP} \pi^+$ (comparison from a recent review):

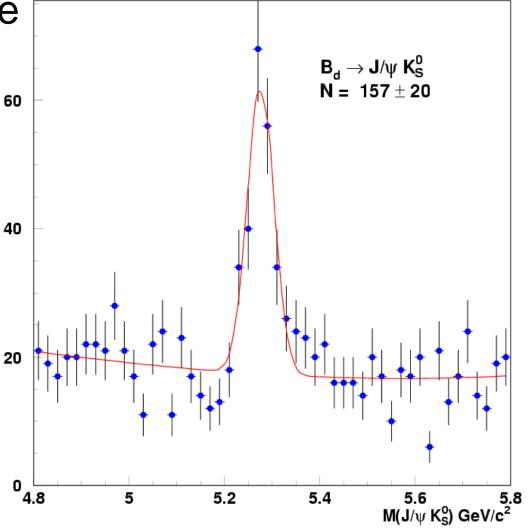
Table 7: Comparison of measurements in A_{CP} for D^0 modes, from E791 (89), FO-CUS (90), CDF (88), and CLEO (78)

		Mode	A_{CP}	Mode	A_{CP}
	CLEO	$D^0 \rightarrow K^+K^-$	$(0.0 \pm 2.2 \pm 0.8)\%$	$D^0 \rightarrow \pi^+\pi^-$	$(1.9 \pm 3.2 \pm 0.8)\%$
	E791	$D^0 \rightarrow K^+K^-$		$D^0 \rightarrow \pi^+\pi^-$	$(-4.9 \pm 7.8 \pm 2.5)\%$
۲	FOCUS	$D^0 \rightarrow K^+K^-$	$(-0.1 \pm 2.2 \pm 1.5)\%$	$D^0 \rightarrow \pi^+\pi^-$	$(4.8 \pm 3.9 \pm 2.5)\%$
	CDF	$D^0 \rightarrow K^+K^-$	$(2.0 \pm 1.7 \pm 0.6)\%$	$D^0 \rightarrow \pi^+\pi^-$	$(3.0 \pm 1.9 \pm 0.6)\%$
٦	CLEO	$D^a \rightarrow K_S^a \pi^a$	A CONTRACTOR OF THE CONTRACTOR	$D^o \rightarrow \pi^o \pi^o$	$(0.1 \pm 4.8)\%$
	CLEO	$D^0 \rightarrow K_S K_S^0$	$(-23 \pm 19)\%$		

Projections for 2 fb-1:

$$D^0 \to \pi^+\pi^-$$
 0.4% 1.9%*sqrt(65/2000) $D^0 \to K^+K^-$ 0.3% 1.7%*sqrt(65/2000) $D^+ \to \pi^+\pi^-\pi^+$ 0.2% 1/sqrt(5nb*2fb^-1/30)

Summary


- CDF and D0 ready for CP violation studies:
 - excellent understanding of tracking and of
 - most low-level components (e.g. dE/dx)
 - New: use of L00 in CDF and D0 trigger hardware
- Bottom line: below Yellow Book estimates
 - Improvements possible, require work
- Focus on Bs, baryons and low rate modes
- Exploit searches for direct CP violation
- Hidden opportunities in charm sector!

Backup slides

sin2β

- D0 yield will improve due to new trigger hardware (just coming online)
- No updates on σ(sin2β) yet

